HOW TO ORDER

ROLL-FORMED

STORCOQR

THE BASICS: HOW TO ORDER

UPRIGHT FRAME

STARTER BAY

BEAM LENGTH: SHELF LENGTH EQUALS THE DISTANCE BETWEEN UPRIGHTS. IT IS DETERMINED BY ADDING THE WIDTHS OF PALLET LOADS PLUS A 3" SIDE CLEARANCE BETWEEN UPRIGHT AND PALLET AND 6" BETWEEN PALLET LOADS. SHELF BEAM CAPACITIES ARE BASED ON A PAIR OF BEAMS SUPPORTING AN EVENLY DISTRIBUTED LOAD.

RACK HEIGHT: ADD THE FOLLOWING FIGURES:
HEIGHT OF PALLET LOADS (INCLUDING PALLET)

+ HEIGHT OF SHELF BEAM
+ 6" MINIMUM VERTICAL CLEARANCE FOR EACH PALLET LOAD
SUM OF ABOVE DIMENSIONS = RACK HEIGHT
FOR UPPERMOST LOAD LEVEL, LOCATION OF SHELF BEAM SHOULD BE 6" LESS THAN FORK TRUCK'S MAXIMUM LIFT HEIGHT. TOP OF BEAMS NEED TO BE AT 2" INCREMENTS.

CAPACITIES

FRAME CAPACITIES (LBS.)

MAXIMUM VERTICAL BEAM SPACING	F14* 14 g . $3^{\prime \prime} \times 15 / 8^{\prime \prime} \text { COL. }$		F24 13 g . $3^{\prime \prime} \times 2^{1 / 2 \prime \prime} \text { COL. }$			F35
36"	17437	23906	28005	27798	31162	38909
42"	16400	22610	26364	26020	29481	36692
48"	15220	21149	24530	23200	27594	34218
54"	13937	19559	22557	21040	25549	31556
60"	12594	17884	20502	19163	23398	28775
66"	11232	16167	18420	17145	21194	25948
72"	9870	14426	16332	15147	18965	23101
78"	8683	12794	14406	13030	16842	20448
84"	7679	11396	12771	11916	15019	18183
90"	6827	10195	11379	10529	13449	16243
96"	6101	9160	10188	9533	12095	14577

Notes

1. Based on RMI 2011 Specification for the Design, Testing and Utilization of Industrial Steel Storage Racks.
2. "Spacing" is distance from floor to top of first beam level. If maximum opening is not floor level, "Spacing" is distance from top of beam to top of beam $+1^{\prime \prime}$.
3. Applicable for non-seismic use only. Building codes may require otherwise.
4. Capacities are for frame components only. Overall rack system configuration is the responsibility of others.
5. Contact your representative for design assistance or for applications not covered by above.
6. Where the bottom portion of frames are exposed to potential minor impacts from forklift trucks or moving equipment, consideration should be given to purchasing one of the optional impact protection devices. Ask your representative for a recommendation
7. *F14 Frame capacity: 4,000 lbs. max per beam level.

SPECIAL ORDER ITEMS MINIMUM RUN REQUIREMENTS APPLY
Please contact your
representative for more information.

ROLL-FORMED FRAME PART NUMBER (EXAMPLE: $3^{\prime \prime} \times 21 / 2^{\prime \prime} \times 42^{\prime \prime} \times 192^{\prime \prime}$)

ROLL-FORMED STEP BEAM PART NUMBER

(EXAMPLE: 41/8" x 96 ")

ROLL-FORMED STEP BEAM CAPACITIES (Lbs. per palr)

	를 을 를 릉							
$\begin{aligned} & \text { 플 } \\ & \text { 랐 } \end{aligned}$	을	$\begin{gathered} \text { SB2500 } \\ \text { 4" CONNECTOR } \\ \text { (2 STUD) } \end{gathered}$	$\begin{gathered} \text { SB3500 } \\ 6^{\prime \prime} \text { CONNECTOR } \\ \text { (3 STUD) } \end{gathered}$	$\begin{gathered} \text { SB4 } 125 \\ \substack{6^{\prime \prime} \text { CONNECTOR } \\ \text { (3 SUD) }} \end{gathered}$	$\begin{gathered} \text { SB4625 } \\ \substack{6^{\prime \prime} \text { CONNECTOR } \\ \text { (3 STUD) }} \end{gathered}$	$\begin{gathered} \text { SB5 } 125 \\ \substack{6^{\prime \prime} \text { CONNECTOR } \\ \text { (3 SUD) }} \end{gathered}$	$\begin{gathered} \text { SB6000 } \\ 6^{\prime \prime} \text { CONNECTOR } \\ (3 \text { STUD }) \end{gathered}$	$\begin{aligned} & \text { SB6500 } \\ & \text { 8" CONNECTOR } \\ & \text { (4 STUD) } \end{aligned}$
48"		4066	6910	8775	10597	12000	12000	12000
72"		2762	4743	5975	7186	9029	12000	12000
84"		2252	4485	5734	6883	8632	12000	12000
96"		1735	3483	5028	6067	7596	10583	12000
102"		1540	3106	4476	5731	7168	9975	11825
108"		1376	2788	4011	5309	6788	9434	11206
120"		1115	2283	3276	4330	5887	8512	10152
144"				2303	3038	4120	6511	8482

Notes:

1. Based on MHIA/RMI 2011 Specification for the Design, Testing and Utilization of Industrial Steel Storage Racks. 6. Spans from $122^{\prime \prime}$ to $144^{\prime \prime}$ designed for 25% impact from placing 1 of 3 loads per shelf.
2. Load Capacities are based on uniformly distributed product load per pair of beams.
3. Deflection is based on product load only, and is limited to $\mathrm{L}($ span $) / 180$.
4. Applicable for non-seismic use only. Building codes may require otherwise
5. Spans from $48^{\prime \prime}$ to $80^{\prime \prime}$ designed for 25% impact from placing 1 load per shelf.
6. Capacities are for beam components only.
Overall rack system configuration is the responsibility of others.
7. Spans from $82^{\prime \prime}$ to $120^{\prime \prime}$ designed for 25% impact from placing 1 of 2 loads per shelf.
8. Contact your representative for design assistance or for applications not covered by above.

STORCOOR

Step 1．Find out everything there is to know about the item you are handling／storing．Find out the three－dimensional size and weight of every load and pallet．Remember，the pallet may not be exactly the same size as the load，there may be overhang one way or the other．Also，be careful to ask about the quality of the bottom of the pallets and whether or not they are capable of resting on beams alone．If they are broken or rotted，they might require wire decking to safely support them．

Step 2．Find out everything there is to know about the area that the rack is going to be installed．Start with the physical dimensions of the available space．Next the floor condition， its load bearing capacity，and any slope．Find out about the available clear headroom and the presence of any overhead or other obstructions．Find out if there are any access ways that the rack must not obstruct．Column centerlines and size are also important for flue space specifications and layout information．

Step 3．Find out the method to be used for storing and retrieving loads in the rack（most often a fork truck）．Can it carry the proposed load？What is its width and right angle turn dimension？What is its maximum lift height？Remember，you must subtract from this number，usually 6 ＂，for most pallets to be lifted clear of the beam．Take note of anything else that might impede on its safe interaction with the rack．
Step 4．At this point，it is recommended that a sketch be made of each individual bay，no matter how small the job．
Step 5．Select the beam．First decide how many loads should be on each beam level．The length of the beam can be determined by adding three inches to either side of the pallet （or load，whichever is largest）and multiplying by all the loads on the beam．For example，a load／pallet of $42^{\prime \prime}$ width，two to a beam $=42^{\prime \prime}+3^{\prime \prime}+3^{\prime \prime}$ ，multiply by 2 and this comes to a $96^{\prime \prime}$ beam．The $3^{\prime \prime}$ additions are to give adequate side clearance for loading and unloading．The model of beam should then be selected from the＇Beam Capacity Chart＇，making sure that the loads do not exceed the maximum capacity．If the beams are longer than $120^{\prime \prime}$ ，they should be tied across the middle to prevent beam spread．If loose decking is to be used，any pair of beams over $90^{\prime \prime}$ in length should be tied across the middle for the same reason．

Step 6．Figure out how many beam levels you will have in any bay．Are the first pallets／loads going to sit on the floor or on a set of beams？To calculate the number of levels，add together the pallet and load height plus 6 ＂for clearance．Add the face／ height of the beam you just selected for the overall total．Fit as many levels as possible in the height available remembering to make sure the fork truck is able to lift the pallet off the top beam with its maximum fork height capabilities．It usually needs an additional $6-8^{\prime \prime}$ of lift height over the top beam． Finally，make sure there is enough clearance for any sprinkler requirements．

Figure 1.

Figure 2.

SPECIFYING A PALLET RACK INSTALLATION continued

Step 7.

- Determine the frame capacity necessary. Total the weight of all pallet loads that will affect one frame. This will be all pallet loads on either side of the frame, up to the center points of the beams (See figure 3 below). Determine the height of the largest pallet opening in the system (usually floor to first beam, but occasionally beam-to-beam above that). Now, using the Frame Capacity Chart, select the appropriate fame model.
- Figure out the height of frame needed. This is the measurement from the floor to the top of the top beam. (see figure 4 below). In most applications, you should then add between $6^{\prime \prime}$ and $18^{\prime \prime}$ (up to the next standard frame size) to allow for flexibility in installation. If the customer wants the frame flush with the top of the top beam, be very sure to check the load dimensions again very carefully and check the floor for the possibility of slope in both the 'cross-aisle' and 'down-aisle' directions.
- Figure out the depth of frame needed. The dimension of the pallet determines this. In most applications where pallet loads are ledge loaded, an overhang of $3^{\prime \prime}$ on either side of the pallet is desirable (if the pallet is $48^{\prime \prime}$ deep, the frame should be $42^{\prime \prime}$). If the application demands that the pallets be flush with the front and back faces of the rack bay, cross supports from beam to beam MUST be used. The cross supports may be safety bars or wire deck.

Step 8. Now, put together your final sketch showing all the bays that go together to make up a row and count up all the beams and frames you need for the system. All beams need to be used as pairs, however when ordering, the total amount of beams (not pairs) should be ordered.

Step 9. Is your system a single row? Or will it be installed 'back-to-back' with another row of rack? If it is back-to-back, it should be tied across the 'flue space' in the middle with row spacers. You should always use a minimum of two row spacers no matter the height. You should also ensure there is not a gap greater than 10^{\prime} in height between row spacers, adding a third or fourth one, if necessary.

Figure 3.

- Side View -

Figure 4.

STORCOOR

SPECIFYING A PALLET RACK INSTALLATION continued

Step 10. You must now determine whether any single rows require addtitional stabilization. First, check the height compared to the depth for overturning stability. To do this, find the height from the floor to the top of the very topmost beam. Now, divide that figure by either the depth of the frame (if this is a single row) or the depth of both frames plus the row spacers (if this is a back-to-back row). Is the answer to your division sum larger than 6.0? If so, you will need to call your representative for assistance, as the system is unstable.

Second, check for rotational stability. Do you have only a single beam level between frames in a bay anywhere? If so, you will need to call your representative for assistance, as this system also is unstable.

Generally, Pallet rack installations are structurally engineered systems that carry heavy loads. The steps above give a guideline for the safe specification of components for simple cases where conditions are perfect.
They are written with regard to RMI 2016 which is the guiding industry specification at time of publication.
If, in the future, this specification is revised or overridden or, if you have any doubt or confusion whatsoever about any of the steps above, please contact your representative for assistance.
Finally, please remember that your system should be shimmed level and anchored to the floor (one anchor per leg).

PALLET RACK ACCESSORIES

WS(length in inches) example: WS6

Flanged Safety Bar FSB(length in inches) example: FSB42

WIRE DECK
WD(length/width in inches) example: WD4246 (for pallet rack)

SHIM
PART NO.: SHM

WEDGE TYPE ANCHOR BOLT PART NO.: WAB

SAFETY LOCK
PART NO.: SNPLK

PALLET RACK SPECIFICATION WORKSHEET

Loading Equipment

Does the customer have a lift truck?
If not, how will loads be placed up into the racks?

Lift Capacity
Max Lift Height \qquad
Turning Circle \qquad

Building or Space

Length \qquad Width \qquad

Clear Height \qquad Look for obstructions! Look for Sprinklers!

Loading

Ledge Loading or Shelf Loading?

Wire Decking?

\square Yes \square No

Layout

1.

Number of levels \qquad Number of Bays \qquad
Number of Rows \qquad Back to Back Rows? \qquad Flue Space \qquad
2.

Number of levels \qquad Number of Bays \qquad
Number of Rows \qquad Back to Back Rows? \qquad Flue Space \qquad

OR: Please make a detailed sketch on next page.

